Machine Learning Models Operation - Deploy, Scale and Sustain


What is is an open source service that reduces engineering overhead required to run machine learning operations on all the levels, starting  from the proof-of-concept to production and sustenance. provides a cluster for serving machine learning models in real-time, a serverless proxy for Spark cluster and a service for monitoring data quality and machine learning intensive applications.


You are here!

You have built an Apache Spark data pipeline and trained machine learning models in hosted notebook environment, TensorFlow toolkit or scikit-learn scripts.

Now scale your process and operations for research and development of machine learning applications to support multiple data science teams, hundreds of training pipelines, thousands of machine learning models that serve predictions for real customers in real time.


Serverless proxy for Spark cluster

Make your Spark operations serverless for data scientists, engineers, and multi-tenant applications. increases the reliability of your Spark jobs, thereby saving the cluster resources and increasing the productivity of data scientists and engineers. Unlock new revenue streams by exposing REST API for interactive applications to business users and tenants.

Get Started with Hydrosphere Mist



Realtime Machine Learning Models Serving Cluster

Deploy your machine learning diversity of sckit-learn, Spark ML, TensorFlow, fastText, xgboost models as end-to-end prediction pipelines. Power smart applications for your users with realtime serving REST API. reduces dramatically engineering and operations burden and improves time to value metrics for data science projects.

Get Started with ML Lambda


Seamless UDF Runtime for Machine Learning

Deploy machine learning models like Elasticsearch, Spark SQL, Cassandra or Redshift User Defined Functions (UDFs), so web engineers could seamlessly integrate machine learning capabilities into existing applications. simplifies querying and scoring machine learning algorithms from the application stack.

Get Started -> Contact Us


Data and Machine Learning QA as a Service

Gain end-to-end quality of your data transformation, training, and prediction pipelines to identify the data quality issues, side effects and model degradation trends before they start affecting your business. provides anomaly detection and pattern recognition components designed for the data and machine learning heavy applications monitoring. It has a great improving impact on the customer experience and the reliability of your data driven business.

Get Started with Sonar


Machine Learning Infrastructure Options is agnostic to your infrastructure, Apache Spark backend and machine learning frameworks.

Infrastructure Options

  • AWS
  • Google Cloud Engine
  • YesDC/OS
  • Kuberneres
  • On Premise

Machine Learning Frameworks

  • Spark MLLib
  • Scikit-learn
  • TensorFlow
  • xgboost
  • Deeplearning4j
  • Others

Machine Learning Serving Runtimes

  • AWS Lambda
  • Hydrosphere Dockerized Runtime
  • On-premise deb/apk packages

UDF deployment

Apache Spark Backends

  • EMR
  • Vanila Spark
  • Hortonworks
  • MapR
  • Cloudera
  • Custom

Request a Demo